首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Parameter Identification of Train Basic Resistance Using Multi-Innovation Theory ⁎
  • 本地全文:下载
  • 作者:Xiaoyu Liu ; Bin Ning ; Jing Xun
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:18
  • 页码:637-642
  • DOI:10.1016/j.ifacol.2018.09.352
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractTrain basic resistance is important for the design of the automatic train operation, which influences the efficiency, punctuality, stop precision, energy consumption, and the safety of the train. The multi-innovation theory is a novel concept which can improve the accuracy of parameter estimation and be used to modify the traditional recursive least squares algorithm. In this paper, we derive the regularization form of the multi-innovation least squares algorithm and apply it to the train basic resistance parameter estimation. The simulation results based on the Yizhuang Line of Beijing Subway indicate that, compared with traditional least squares algorithm, the multi-innovation least squares algorithm can provide higher estimation accuracy and robustness, and can be used for online identification.
  • 关键词:KeywordsTrain basic resistanceMulti-innovation identificationRecursive identificationParameter estimationUrban rail transit
国家哲学社会科学文献中心版权所有