首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Combining Active Learning and Fisher Discriminant Analysis for the Semi-supervised Process Monitoring
  • 本地全文:下载
  • 作者:Lili Yin ; Huangang Wang ; Wenhui Fan
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:21
  • 页码:147-151
  • DOI:10.1016/j.ifacol.2018.09.407
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractFault detection and fault classification are two extremely important parts in process monitoring. However, obtaining the true labels of the industrial data is often time-consuming and expensive in practice, which brings great difficulties to the fault classification. To solve this problem, a new semi-supervised fault classification method is proposed, which combines the active learning and fisher discriminant analysis (FDA). The limited capacity of FDA can be effectively improved by integrating the active learning for semi-supervised fault classification. The experiments on the Benchmark of Tennessee Eastman process (TEP) prove the effectiveness of the proposed method.
  • 关键词:KeywordsActive learningFisher discriminant analysisFault classificationSemi-supervised process monitoring
国家哲学社会科学文献中心版权所有