首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Forecasting Stock Market Volatility on Bursa Malaysia Plantation Index
  • 本地全文:下载
  • 作者:Hui-Shan Lee ; Hui-Shan Lee ; David Ching-Yat Ng
  • 期刊名称:International Journal of Finance and Accounting
  • 印刷版ISSN:2168-4812
  • 电子版ISSN:2168-4820
  • 出版年度:2016
  • 卷号:5
  • 期号:1
  • 页码:54-61
  • DOI:10.5923/j.ijfa.20160501.07
  • 语种:English
  • 出版社:Scientific & Academic Publishing Co.
  • 摘要:This research applies the Bursa Malaysia Plantation Index to examine the most suitable forecasting model. The Plantation Index is studied because Malaysia is the world second largest in oil palm producer. Additionally, volatile crude palm oil price has resulted in the Plantation Index becoming more volatile as earnings of plantation companies depend heavily on crude palm oil prices. The forecasting techniques applied were random walk, moving average, simple regression and historical mean. The error in forecasting was measured by symmetric and asymmetric error statistics. The most suitable volatility forecasting technique for Bursa Malaysia Plantation Index was simple regression technique. The findings to a very large extent indicate that although there are different sophisticated forecasting technique, investor, managers and regulators could employ the less costly simple regression method to forecast oil palm related stocks and make their wise decision in investment, management and regulation in oil palm industry.
  • 关键词:Forecasting; Security market volatility; Volatility forecasting technique; Symmetric error statistics; Asymmetric error statistics
国家哲学社会科学文献中心版权所有