首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:A Deep Belief Network-based Fault Detection Method for Nonlinear Processes
  • 本地全文:下载
  • 作者:Peng Tang ; Kaixiang Peng ; Kai Zhang
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:24
  • 页码:9-14
  • DOI:10.1016/j.ifacol.2018.09.522
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractDeep learning has been obtained extensive attention in many fields. In this paper, a fault detection based on deep belief network (DBN) method is proposed for nonlinear processes. Then the industrial processes abnormal monitoring is realized by test statistics, which is built by feature variables and residual variables produced by DBN. The Tennessee-Eastman (TE) process have been used to evaluate the efficiency of the proposed method.
  • 关键词:KeywordsDBNRestrict Boltzmann Machinefault detectionnonlinear processesTE process
国家哲学社会科学文献中心版权所有