首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:A New Method for Fault Tolerant Control through Q-Learning
  • 本地全文:下载
  • 作者:Changsheng Hua ; Steven X. Ding ; Yuri A.W. Shardt
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:24
  • 页码:38-45
  • DOI:10.1016/j.ifacol.2018.09.526
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper proposes a new data-driven method for addressing fault tolerant control problems. Unlike existing model-based or data-driven methods, the proposed method realizes fault tolerant control without knowing any system model parameter or performing any model identification.Q-learningsevers as a key tool in this procedure. In addition, unlike conventionalQ-learningalgorithms used in the control community, the new proposed one can be applied in weakly stochastic environments, which facilitates the application of the fault tolerant control method in real industrial occasions. A DC motor simulation example demonstrates the effectiveness of the proposed method.
  • 关键词:Keywordsdata-drivenfault tolerant controlQ-learningreinforcement learning
国家哲学社会科学文献中心版权所有