摘要:AbstractThe paper introduces the in-flight fault detection and basic reconfiguration of a small unmanned aerial vehicle equipped with two elevons and an electric motor. The considered fault scenario is one control surface stuck at a given position during straight and level flight. The fault detection is solved with Multiple Model Adaptive Estimation considering non-faulty and faulty (left or right surface stuck) system models. Basic reconfiguration to stabilize the flight against atmospheric disturbances is done applying the remaining surface in the lateral channel and the total energy control concept to hold the airspeed and altitude between acceptable limits in the longitudinal channel. Promising results are achieved in software-in-the-loop simulation with the fault detection and reconfiguration.