摘要:AbstractMonitoring in real-time and autonomously the health state of aeronautic structures is referred to as Structural Health Monitoring (SHM) and is a process decomposed in four steps: damage detection, localization, classification, and quantification. Structures under study are here composite structures representative of aeronautic applications and the focus is put on the localization step of the SHM process. The fact that SHM data are naturally three-way tensors is here investigated for this purpose. It is demonstrated that under classical assumptions regarding wave propagation, the canonical polyadic decomposition of rank 2 of the tensor built from the phase of the difference signals between a healthy and damaged states provides direct access to the distances between the piezoelectric elements and the damage. This property is used here to propose an original and robust tensor-based damage localization algorithm. This algorithm is successfully validated on experimental data coming from composite plates with mounted piezoelectric elements and compared with a classical localization algorithm based on triangulation.
关键词:Keywordsstructural health monitoringdamage localizationtensorscanonical polyadic decompositionlamb wavespiezoelectric elements