首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Monitoring of Structural Systems Using Improved Data Driven Damage Detection Technique ⁎
  • 本地全文:下载
  • 作者:Marwa Chaabane ; Majdi Mansouri ; Ahmed Ben Hamida
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:24
  • 页码:843-848
  • DOI:10.1016/j.ifacol.2018.09.673
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThe objective of this paper is to propose a new damage detection technique based on multiscale kernel partial least squares (MSKPLS), optimized exponentially weighted moving average (OEWMA) and generalized likelihood ratio test (GLRT) in order to enhance monitoring of structural systems. The developed technique attempts to combine the advantages of the EWMA and GLRT charts with those of multiscale nonlinear input-output model (kernel PLS) and multi-objective optimization. The performance of the developed damage detection technique is assessed using two illustrative examples, synthetic data and simulated International Association for Structural Control-American society of Civil engineers (IASC-ASCE) benchmark structure.
  • 关键词:KeywordsDamage Detectionkernel Partial Least Squaresexponentially weighted moving averagegeneralized likelihood ratio teststructural health monitoring
国家哲学社会科学文献中心版权所有