摘要:AbstractThe objective of this paper is to propose a new damage detection technique based on multiscale kernel partial least squares (MSKPLS), optimized exponentially weighted moving average (OEWMA) and generalized likelihood ratio test (GLRT) in order to enhance monitoring of structural systems. The developed technique attempts to combine the advantages of the EWMA and GLRT charts with those of multiscale nonlinear input-output model (kernel PLS) and multi-objective optimization. The performance of the developed damage detection technique is assessed using two illustrative examples, synthetic data and simulated International Association for Structural Control-American society of Civil engineers (IASC-ASCE) benchmark structure.
关键词:KeywordsDamage Detectionkernel Partial Least Squaresexponentially weighted moving averagegeneralized likelihood ratio teststructural health monitoring