摘要:AbstractDue to the increasing size of wind turbines, the unbalanced loads caused by the uneven spatial distribution of wind speed and turbulence are becoming larger and larger. As has been proved, individual pitch control (IPC) can mitigate the blade asymmetric loads greatly in region 3. On the other hand, the pitch actuator faults can affect the pitching performance with slow dynamics, resulting in generator power instability and even deteriorating the unbalanced loads of blades. However, the effects of unbalanced blade loads deterioration caused by pitch actuator faults have not been taken into account by the traditional IPC design. In the present paper, a fault-tolerant control (FTC) strategy using adaptive sliding mode estimation is combined with a traditional IPC system based on two different control methods (Proportional-Integral andH∞loop-shaping). It maintains the nominal pitch performance and removes the negative effects of pitch actuator faults on generator power and unbalanced blade loads perfectly. The effectiveness of the proposed strategy is verified on the 5MW NREL wind turbine system.