首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:To Measure the Changing Relief of Arctic Rivers: A Synthetic Aperture RADAR Experiment in Alaska
  • 本地全文:下载
  • 作者:Reginald R. Muskett
  • 期刊名称:Journal of Geoscience and Environment Protection
  • 印刷版ISSN:2327-4336
  • 电子版ISSN:2327-4344
  • 出版年度:2018
  • 卷号:6
  • 期号:9
  • 页码:207-222
  • DOI:10.4236/gep.2018.69016
  • 语种:English
  • 出版社:Scientific Research Pub
  • 摘要:This river crossing the lowland tundra-permafrost of the continuous permafrost zone of the Alaska North Slope can have extensive floodplain relief not simply created by channel migration during spring floods alone. Many of the rivers have channel-beds inherited from glacial landscapes and Holocene to present-day paraglacial and periglacial processes and mountain gradient sources [1] [2] [3] [4]. Interest is turning to understand effects from permafrost and ice wedge networks (ground ice) thaw, degradation and erosion and how such effects impact carbon and water equivalent mass balance. The 2015 flooding of the Sagavanirktok River crossing the Alaska North Slope brings this and additional impacts to-and-by human infrastructure into focus. Geodetic methods to measure centimeter to millimeter-scale changes using aircraft- and satellite-deployed Synthetic Aperture (SA) RAdio Detection And Ranging (RADAR) cannot ignore volume scattering. Backscatter and coherence at L-frequency and others possess both surface and volumetric scattering. On lowland tundra underlain by permafrost volume scattering dominants the RADAR backscatter coherence (the results of this work and [16]). Measurement of the L-frequency penetration depth for evaluation of mass change (carbon and water equivalent loss and transport) through permafrost and ground ice thaw-degradation with erosion is necessary. The Jet Propulsion Laboratory-National Aeronautical and Space Administration airborne Uninhabited Aerial Vehicle SAR (UAVSAR) L-frequency full quad-polarimetry cross-pole HHVV (polarization rotation, Horizontal to Vertical) confirms the dominance of volume scattering on lowland tundra (RADAR-soft targets) whereas surface scattering (HHHH or VVVV, no rotation) dominates on river channel deposits, rock outcrops and metal objects (RADAR-hard targets). Quantifying polarization rotation and the L-frequency penetration depth on lowland tundra are challenges for a new field validation and verification experiment.
  • 关键词:AlaskaTundraExperimentRADARPolarimetry
国家哲学社会科学文献中心版权所有