首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:RST-based Discourse Coherence Quality Analysis Model for Students’ English Essays
  • 本地全文:下载
  • 作者:Guimin Huang ; Min Tan ; Zhenglin Sun
  • 期刊名称:MATEC Web of Conferences
  • 电子版ISSN:2261-236X
  • 出版年度:2018
  • 卷号:232
  • DOI:10.1051/matecconf/201823202020
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:Against the problems which can’t be solved by the word-level based local coherence analysis model, we propose a new discourse coherence quality analysis model (abbreviated RST-DCQA) by analyzing the full hierarchical discourse structure of English essays. Under the framework of rhetorical structure theory (RST), firstly, we design an RST-style discourse relations parser to capture the deep hierarchical discourse structure of essays; secondly, we transform the discourse relation information into a discourse relation matrix; finally, we design an algorithm to analyze the discourse coherence quality of student’s English essays. The experimental results show that the average error of our model’s score and teacher’s score is only 2.63, and the Pearson correlation coefficient is 0.71. Compared with the other models, our RST-DCQA model has a higher accuracy and better practicality in the field of students’ essays assessment.
国家哲学社会科学文献中心版权所有