摘要:Using the traditional Ant Colony Algorithm for AGV path planning is easy to fall into the local optimal solution and lacking the capability of obstacle avoidance in the complex storage environment. In this paper, by constructing the MAKLINK undirected network routes and the heuristic function is optimized in the Ant Colony Algorithm, then the AGV path reaches the global optimal path and has the ability to avoid obstacles. According to research, the improved Ant Colony Algorithm proposed in this paper is superior to the traditional Ant Colony Algorithm in terms of convergence speed and the distance of optimal path planning.