首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Research on Improved Canny Edge Detection Algorithm
  • 本地全文:下载
  • 作者:Ruiyuan Liu ; Jian Mao
  • 期刊名称:MATEC Web of Conferences
  • 电子版ISSN:2261-236X
  • 出版年度:2018
  • 卷号:232
  • DOI:10.1051/matecconf/201823203053
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:Aiming at the poor noise robustness of traditional Canny algorithm and the defect of false edge or edge loss, an edge detection algorithm using statistical algorithm for filtering denoising and using genetic algorithm to determine the optimal high and low threshold of image segmentation is proposed. Firstly, statistical filtering uses mean and variance to denoise, avoiding the problem of Gaussian denoising susceptible to interference in the traditional Canny algorithm, and ensuring the integrity of image edge information. Secondly, this article uses the genetic algorithm, design the crossover operator and genetic operator to modify the evolution of the population, and determine the optimal height threshold of the image edge connection to make the threshold more accurate. Finally, using MATLAB software to simulate, the results show that the improved Canny edge detection algorithm can further improve the anti-noise ability and robustness, and the edge location is more accurate.
国家哲学社会科学文献中心版权所有