摘要:With the rapid development and wide use of MANET, the quality of service for various businesses is much higher than before. Aiming at the adaptive routing control with multiple parameters for universal scenes, we propose an intelligent routing control algorithm for MANET based on reinforcement learning, which can constantly optimize the node selection strategy through the interaction with the environment and converge to the optimal transmission paths gradually. There is no need to update the network state frequently, which can save the cost of routing maintenance while improving the transmission performance. Simulation results show that, compared with other algorithms, the proposed approach can choose appropriate paths under constraint conditions, and can obtain better optimization objective.