首页    期刊浏览 2025年06月28日 星期六
登录注册

文章基本信息

  • 标题:Uniqueness Conditions for ALS Problems ⁎
  • 本地全文:下载
  • 作者:Travis J. Arnold ; James B. Rawlings
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:20
  • 页码:469-474
  • DOI:10.1016/j.ifacol.2018.11.045
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractKnowledge of the process, measurement, and cross noise covariance matrices (denotedQ, R,andS,respectively) is necessary for tasks such as state estimation and performance monitoring. Several different types of algorithms have been developed to estimate these parameters from plant output data. Chief among them are the so-called correlation methods, such as autocovariance least squares (ALS). Despite the advances in covariance estimation algorithms, relatively little attention has been given to the topic of parameter identifiability. This paper discusses the limitations of whenQ, R,andSare identifiable from output data. In particular, it is shown that for stable, linear time-invariant systems, the Kalman predictor gain, but notQ, R,andS,can be uniquely identified from the steady-state output autocovariance. Constrained ALS problems and the extension of the ALS problem to nonlinear and linear time-varying systems are also discussed.
  • 关键词:KeywordsCovariance matricesstate estimationparameter estimationmodel predictive controluniquenessleast squares
国家哲学社会科学文献中心版权所有