首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Stability of Gaussian Process Learning Based Output Feedback Model Predictive Control ⁎
  • 本地全文:下载
  • 作者:Michael Maiworm ; Daniel Limon ; Jose Maria Manzano
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:20
  • 页码:455-461
  • DOI:10.1016/j.ifacol.2018.11.047
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractWe present an output feedback nonlinear model predictive control approach that uses a Gaussian process model for prediction. We show nominal stability assuming that the Gaussian process model is able to represent the real process and establish input-to-state stability assuming a bounded error between the real process and the Gaussian model approximation. These results are achieved using a predictive control formulation without terminal region. The approach is illustrated using a continuous stirred-tank reactor benchmark problem.
  • 关键词:Keywordspredictive controlGaussian processeslearningstabilityrobustoutput feedback
国家哲学社会科学文献中心版权所有