首页    期刊浏览 2024年07月19日 星期五
登录注册

文章基本信息

  • 标题:Study on aluminum foam as a filler material for impact limiter of spent fuel transport cask
  • 本地全文:下载
  • 作者:Zhongfang Li ; Siyi Yang ; Haile Xu
  • 期刊名称:MATEC Web of Conferences
  • 电子版ISSN:2261-236X
  • 出版年度:2018
  • 卷号:238
  • DOI:10.1051/matecconf/201823805006
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:Spent fuel transport cask is a significant carrier of spent fuel transport. The main function of impact limiters installed at both ends of the container is to absorb energy and limit overload to ensure the integrity of the structure. The quasi-static compression process of aluminum foam was simulated on the platform of ANSYS Workbench. Foam aluminum was prepared by melt foaming method and quasi static compression test was carried out. The experimental results show that the deformation process of aluminum foam is basically the same as that of experiment, and the aluminum foam has good compressive and energy absorption properties. The yield stress (σys) and plateau stress (σpl) of aluminum foam with density of 0.64 g/cm3can reach 8.26 MPa and 11.11 MPa respectively, and the energy absorption capacity(WEA)and unit energy absorption capacity(WSEA)can reach 6.31 x 103KJ/m3and 9.87 KJ/Kg respectively, and the difference between the foam with density of 0.61g/cm3and its various properties is very small. It can be concluded that the aluminum foam in a certain density range has roughly the same performance, and it also reflected the stability of aluminum foam's performance. Additionally, aluminum foam is an isotropic material, which can overcome directional limitation when used as shock absorber filler material for spent fuel transport cask.
国家哲学社会科学文献中心版权所有