摘要:Simulated Annealing (SA) is a common meta-heuristic algorithm that has been widely used to solve complex optimization problems. This work proposes a hybrid SA with EMC to divert the search effectively to another promising region. Moreover, a Tabu list memory applied to avoid cycling. Experimental results showed that the solution quality has enhanced using SA-EMCQ by escaping the search space from local optimum to another promising region space. In addition, the results showed that our proposed technique has outperformed the standard SA and gave comparable results to other approaches in the literature when tested on ITC2007-Track3 university course timetabling datasets.