首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Numerical solution of nonlinear sine–Gordon equation by using the modified cubic B-spline differential quadrature method
  • 本地全文:下载
  • 作者:H.S. Shukla ; Mohammad Tamsir
  • 期刊名称:Beni-Suef University Journal of Basic and Applied Sciences
  • 印刷版ISSN:2314-8535
  • 电子版ISSN:2314-8543
  • 出版年度:2018
  • 卷号:7
  • 期号:4
  • 页码:359-366
  • DOI:10.1016/j.bjbas.2016.12.001
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper deals with numerical solution of one dimensional nonlinear sine–Gordon. “Modified cubic B-spline differential quadrature method” is used to solve one dimensional nonlinear sine–Gordon. The method reduces the problem to a system of first order ordinary differential equations (ODEs). The resulting system of ODEs is solved by “an optimal five stage and fourth-order strong stability preserving Runge–Kutta (SSP-RK54) method”. Finally, the method is illustrated and compared with existing methods via numerical examples. It is found that the method not only is quite easy to implement, but also gives better results than the ones already existing in the literature.
  • 关键词:Sine–Gordon equation;MCB-DQM;SSP-RK54;Thomas algorithm
国家哲学社会科学文献中心版权所有