首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Comparison of Object and Pixel-Based Classifications For Mapping Crops Using Rapideye Imagery: A Case Study Of Menemen Plain, Turkey
  • 本地全文:下载
  • 作者:M. Tolga Esetlili ; Filiz Bektas Balcik ; Fusun Balik Sanli
  • 期刊名称:International Journal of Environment and Geoinformatics
  • 电子版ISSN:2148-9173
  • 出版年度:2018
  • 卷号:5
  • 期号:2
  • 页码:231-243
  • DOI:10.30897/ijegeo.442002
  • 语种:English
  • 出版社:IJEGEO
  • 摘要:With the latestdevelopment and increasing availability of high spatial resolution sensors,earth observation technology offers a viable solution for crop identificationand management. There is a strong need to produce accurate, reliable and up todate crop type maps for sustainable agriculture monitoring and management. Inthis study, RapidEye, the first high-resolution multi-spectral satellite systemthat operationally provides a Red-edge channel, was used to test the potentialof the data for crop type mapping. This study was investigated at a selectedregion mostly covered with agricultural fields locates in the low lands ofMenemen (İzmir) Plain, TURKEY. The potential of the three classificationalgorithms such as Maximum Likelihood Classification, Support Vector Machineand Object Based Image Analysis istested. Accuracy assessment of land cover maps has been performedthrough error matrix and kappa indexes. The results highlighted that allselected classifiers as highly useful (over 90%) in mapping of crop types inthe study region however the object-based approach slightly outperforming theSupport Vector Machine classification by both overall accuracy and Kappastatistics. The success of selected methods also underlines the potential ofRapidEye data for mapping crop types in Aegean region.
  • 关键词:crop type mapping; Pixel-based classification; Object-based classification
国家哲学社会科学文献中心版权所有