首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:Application of neural network in determination of parameters for milling AZ91HP magnesium alloy with surface roughness constraint
  • 本地全文:下载
  • 作者:Monika Kulisz ; Ireneusz Zagórski
  • 期刊名称:MATEC Web of Conferences
  • 电子版ISSN:2261-236X
  • 出版年度:2019
  • 卷号:252
  • DOI:10.1051/matecconf/201925203017
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:This paper presents the model for milling AZ91HP magnesium alloy with TiAlN coated carbide end mill. The model was developed on the basis of experimental data from the neural network training data set. The milling process was conducted at constant parameters of tool geometry, workpiece strength properties, technological machine properties, radial and axial depth of cut. The range of changeable machining parameters specified in this study included cutting speed, feed per tooth, and the output variable: the arithmetical mean roughness parameter (Ra). The process was modelled by means of MatLab software and its Neural Network Toolbox. The developed model was implemented in the algorithm designed to determine optimal milling conditions, exploring the space of acceptable parameters in search of those which would meet the specified roughness parameter at maximum efficiency.
国家哲学社会科学文献中心版权所有