摘要:Waste management is a crucial process to keep the environment in wholesome conditions. The environmental impact of solid waste and wastewater is reduced through construction of appropriate disposal installations. The objective of wastewater treatment in biological reactors is to control the process of biomaterial growth by aerating the sewage content. The process is complex, as depending on a plenty of parameters. In the last decades an effective numerical model, called the Activated Sludge Model (ASM), has been proposed for describing the biological process. The ASM is implemented in the Benchmark Simulation Model (BSM) that simulates the whole wastewater treatment process. The most important parameters in ASM are the kinetic and stoichiometric coefficients. The former describes rate-concentration dependence. The latter characterises the relationship between the components of chemical reactions taking place in the cleaning process. Above parameters are determined by on-site calibration and their importance is relevant during the development of numeric models. This paper aims to examine the influence of kinetic and stoichiometric parameters on the wastewater treatment process of a plant in Płaszów, Kraków. The analysis is carried out by a sample-based numerical procedure. It highlights the ASM parameters playing a major role in the treatment process. Results obtained from the analysis are important for future validation and optimisation processes.