摘要:This article presents an original approach to improve the results of tomographic reconstructions by denoising the input data, which affects output images improving. The algorithms used in the research are based on autoencoders and Elastic Net - both related to artificial intelligence or machine-learning developed controllers. Due to the reduction of unnecessary features and removal of mutually correlated input variables generated by the tomography electrodes, good quality reconstructions of tomographic images were obtained. The simulation experiments proved that the presented methods could be effective in improving the quality of reconstructed tomographic images.