首页    期刊浏览 2024年11月07日 星期四
登录注册

文章基本信息

  • 标题:The potential of many-line inversions of photospheric spectropolarimetric data in the visible and near UV
  • 本地全文:下载
  • 作者:T. L. Riethmüller ; S. K. Solanki
  • 期刊名称:Astronomy & Astrophysics
  • 印刷版ISSN:0004-6361
  • 电子版ISSN:1432-0746
  • 出版年度:2019
  • 卷号:622
  • DOI:10.1051/0004-6361/201833379
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:Our knowledge of the lower solar atmosphere is mainly obtained from spectropolarimetric observations, which are often carried out in the red or infrared spectral range and almost always cover only a single or a few spectral lines. Here we compare the quality of Stokes inversions of only a few spectral lines with many-line inversions. In connection with this, we have also investigated the feasibility of spectropolarimetry in the short-wavelength range, 3000 Å−4300 Å, where the line density but also the photon noise are considerably higher than in the red, so that many-line inversions could be particularly attractive in that wavelength range. This is also timely because this wavelength range will be the focus of a new spectropolarimeter in the third science flight of the balloon-borne solar observatorySUNRISE. For an ensemble of state-of-the-art magneto-hydrodynamical atmospheres we synthesize exemplarily spectral regions around 3140 Å (containing 371 identified spectral lines), around 4080 Å (328 lines), and around 6302 Å (110 lines). The spectral coverage is chosen such that at a spectral resolving power of 150 000 the spectra can be recorded by a 2K × 2K detector. The synthetic Stokes profiles are degraded with a typical photon noise and afterward inverted. The atmospheric parameters of the inversion of noisy profiles are compared with the inversion of noise-free spectra. We find that significantly more information can be obtained from many-line inversions than from a traditionally used inversion of only a few spectral lines. We further find that information on the upper photosphere can be significantly more reliably obtained at short wavelengths. In the mid and lower photosphere, the many-line approach at 4080 Å provides equally good results as the many-line approach at 6302 Å for the magnetic field strength and the line-of-sight (LOS) velocity, while the temperature determination is even more precise by a factor of three. We conclude from our results that many-line spectropolarimetry should be the preferred option in the future, and in particular at short wavelengths it offers a high potential in solar physics.
  • 关键词:enSun: magnetic fieldsSun: photospheremagnetohydrodynamics (MHD)
国家哲学社会科学文献中心版权所有