摘要:Carbon and oxygen are key tracers of the Galactic chemical evolution; in particular, a reported upturn in [C/O] towards decreasing [O/H] in metal-poor halo stars could be a signature of nucleosynthesis by massive Population III stars. We reanalyse carbon, oxygen, and iron abundances in 39 metal-poor turn-off stars. For the first time, we take into account 3D hydrodynamic effects together with departures from local thermodynamic equilibrium (LTE) when determining both the stellar parameters and the elemental abundances, by deriving effective temperatures from 3D non-LTE Hβprofiles, surface gravities from Gaia parallaxes, iron abundances from 3D LTE Fe IIequivalent widths, and carbon and oxygen abundances from 3D non-LTE C Iand O Iequivalent widths. We find that [C/Fe] stays flat with [Fe/H], whereas [O/Fe] increases linearly up to 0.75 dex with decreasing [Fe/H] down to −3.0 dex. Therefore [C/O] monotonically decreases towards decreasing [C/H], in contrast to previous findings, mainly because the non-LTE effects for O Iat low [Fe/H] are weaker with our improved calculations.
关键词:enradiative transferstars: abundancesstars: late-typestars: Population II