首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:A Varied Density-based Clustering Approach for Event Detection from Heterogeneous Twitter Data
  • 本地全文:下载
  • 作者:Zeinab Ghaemi ; Mahdi Farnaghi
  • 期刊名称:ISPRS International Journal of Geo-Information
  • 电子版ISSN:2220-9964
  • 出版年度:2019
  • 卷号:8
  • 期号:2
  • 页码:82
  • DOI:10.3390/ijgi8020082
  • 语种:English
  • 出版社:MDPI AG
  • 摘要:Extracting the latent knowledge from Twitter by applying spatial clustering on geotagged tweets provides the ability to discover events and their locations. DBSCAN (density-based spatial clustering of applications with noise), which has been widely used to retrieve events from geotagged tweets, cannot efficiently detect clusters when there is significant spatial heterogeneity in the dataset, as it is the case for Twitter data where the distribution of users, as well as the intensity of publishing tweets, varies over the study areas. This study proposes VDCT (Varied Density-based spatial Clustering for Twitter data) algorithm that extracts clusters from geotagged tweets by considering spatial heterogeneity. The algorithm employs exponential spline interpolation to determine different search radiuses for cluster detection. Moreover, in addition to spatial proximity, textual similarities among tweets are also taken into account by the algorithm. In order to examine the efficiency of the algorithm, geotagged tweets collected during a hurricane in the United States were used for event detection. The output clusters of VDCT have been compared to those of DBSCAN. Visual and quantitative comparison of the results proved the feasibility of the proposed method.
国家哲学社会科学文献中心版权所有