期刊名称:ISPRS International Journal of Geo-Information
电子版ISSN:2220-9964
出版年度:2019
卷号:8
期号:2
页码:63
DOI:10.3390/ijgi8020063
语种:English
出版社:MDPI AG
摘要:Trajectory big data have significant applications in many areas, such as traffic management, urban planning and military reconnaissance. Traditional visualization methods, which are represented by contour maps, shading maps and hypsometric maps, are mainly based on the spatiotemporal information of trajectories, which can macroscopically study the spatiotemporal conditions of the entire trajectory set and microscopically analyze the individual movement of each trajectory; such methods are widely used in screen display and flat mapping. With the improvement of trajectory data quality, these data can generally describe information in the spatial and temporal dimensions and involve many other attributes (e.g., speed, orientation, and elevation) with large data amounts and high dimensions. Additionally, these data have relatively complicated internal relationships and regularities, whose analysis could cause many troubles; the traditional approaches can no longer fully meet the requirements of visualizing trajectory data and mining hidden information. Therefore, diverse visualization methods that present the value of massive trajectory information are currently a hot research topic. This paper summarizes the research status of trajectory data-visualization techniques in recent years and extracts common contemporary trajectory data-visualization methods to comprehensively cognize and understand the fundamental characteristics and diverse achievements of trajectory-data visualization.