首页    期刊浏览 2025年08月19日 星期二
登录注册

文章基本信息

  • 标题:Improving trading technical analysis with TensorFlow Long Short-Term Memory (LSTM) Neural Network
  • 本地全文:下载
  • 作者:Chenjie Sang ; Massimo Di Pierro
  • 期刊名称:The Journal of Finance and Data Science
  • 印刷版ISSN:2405-9188
  • 出版年度:2019
  • 卷号:5
  • 期号:1
  • 页码:1-11
  • DOI:10.1016/j.jfds.2018.10.003
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper we utilize a Long Short-Term Memory Neural Network to learn from and improve upon traditional trading algorithms used in technical analysis. The rationale behind our study is that the network can learn market behavior and be able to predict when a given strategy is more likely to succeed. We implemented our algorithm in Python pursuing Google's TensorFlow. We show that our strategy, based on a combination of neural network prediction, and traditional technical analysis, performs better than the latter alone.
  • 关键词:LSTM;Neural network;Trading;Tensorflow;Stock market
国家哲学社会科学文献中心版权所有