首页    期刊浏览 2024年07月19日 星期五
登录注册

文章基本信息

  • 标题:Impact of photometric redshifts on the galaxy power spectrum and BAO scale in the LSST survey
  • 本地全文:下载
  • 作者:Reza Ansari ; Adeline Choyer ; Farhang Habibi
  • 期刊名称:Astronomy & Astrophysics
  • 印刷版ISSN:0004-6361
  • 电子版ISSN:1432-0746
  • 出版年度:2019
  • 卷号:623
  • DOI:10.1051/0004-6361/201833732
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:Context. The Large Synoptic Survey Telescope (LSST) survey will image billions of galaxies every few nights for ten years, and as such, should be a major contributor to precision cosmology in the 2020s. High precision photometric data will be available in six bands, from near-infrared to near-ultraviolet. The computation of precise, unbiased, photometric redshifts up to at leastz = 2 is one of the main LSST challenges and its performance will have major impact on all extragalactic LSST sciences.Aims. We evaluate the efficiency of our photometric redshift reconstruction on mock galaxy catalogues up toz = 2.45 and estimate the impact of realistic photometric redshift (photo-z) reconstruction on the large-scale structures (LSS) power spectrum and the baryonic acoustic oscillation (BAO) scale determination for a LSST-like photometric survey. We study the effectiveness of the BAO scale as a cosmological probe in the LSST survey.Methods. We have performed a detailed modelling of the photo-zdistribution as a function of galaxy type, redshift and absolute magnitude using our photo-zreconstruction code with a quality selection cut based on a boosted decision tree (BDT). We have simulated a catalogue of galaxies in the redshift range [0.2−2.45] using the Planck 2015 ΛCDM cosmological parameters over 10 000 square-degrees, in the six bands, assuming LSST photometric precision for a ten-year survey. The mock galaxy catalogues were produced with several redshift error models. The LSS power spectrum was then computed in several redshift ranges and for each error model. Finally we extracted the BAO scale and its uncertainty using only the linear part of the LSS spectrum.Results. We have computed the fractional error on the recovered power spectrum which is dominated by the shot noise at high redshift (z ≳ 1), for scalesk ≳ 0.1, due to the photo-zdamping. The BAO scale can be recovered with a percent or better accuracy level fromz = 0.5 toz = 1.5 using realistic photo-zreconstruction.Conclusions. Reaching the LSST requirements for photo-zreconstruction is crucial to exploit the LSST potential in cosmology, in particular to measure the LSS power spectrum and its evolution with redshift. Although the BAO scale is not the most powerful cosmological probe in LSST, it can be used to check the consistency of the LSS measurement. Moreover we show that the impact of photo-zsmearing on the recovered isotropic BAO scale in LSST should stay limited up toz ≈ 1.5, so as long as the galaxy number density balances the photo-zsmoothing.
  • 关键词:enlarge-scale structure of Universegalaxies: distances and redshifts
国家哲学社会科学文献中心版权所有