摘要:This paper proposes a generalized active disturbance rejection controller (GADRC) based hierarchical control structure for the boilerturbine unit. In the lower layer, a multivariable extended state observer (MESO) is developed to estimate the values of the lumped disturbances caused by modelling mismatches, fuel quality variation and wide range load variation. The influence of the disturbances is then compensated at the input side as a feedforward control. In the upper layer, the multi-objective optimization is devised to obtain the set-points by removing the plant behaviour variation from the optimized model in a feasible way. The lowpass filter acting on the lumped disturbances is designed to bridge the gap between the lower and upper layer. The impact of the feedthrough item is approximated by a first-order system and a two degree-of-freedom (2-DOF) control strategy is established to illustrate the set-point tracking and disturbance rejection properties of the controller. Simulation studies on a 1000MWe coal-fired ultra-supercritical boiler-turbine unit demonstrate that the proposed control strategy can achieve a satisfactory performance in cases of fuel quality variations, model-plant mismatches and wide range load variation.