首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Snowboot: Bootstrap Methods for Network Inference
  • 本地全文:下载
  • 作者:Yuzhou Chen ; Yulia R. Gel ; Vyacheslav Lyubchich
  • 期刊名称:R News
  • 印刷版ISSN:1609-3631
  • 出版年度:2018
  • 卷号:10
  • 期号:2
  • 页码:95-113
  • 语种:English
  • 出版社:The R Foundation for Statistical Computing
  • 摘要:Complex networks are used to describe a broad range of disparate social systems and natural phenomena, from power grids to customer segmentation to human brain connectome. Challenges of parametric model specification and validation inspire a search for more data-driven and flexible nonparametric approaches for inference of complex networks. In this paper we discuss methodology and R implementation of two bootstrap procedures on random networks, that is, patchwork bootstrap of Thompson et al. (2016) and Gel et al. (2017) and vertex bootstrap of Snijders and Borgatti (1999). To our knowledge, the new R package snowboot is the first implementation of the vertex and patchwork bootstrap inference on networks in R. Our new package is accompanied with a detailed user’s manual, and is compatible with the popular R package on network studies igraph. We evaluate the patchwork bootstrap and vertex bootstrap with extensive simulation studies and illustrate their utility in an application to analysis of real world networks.
国家哲学社会科学文献中心版权所有