首页    期刊浏览 2025年07月20日 星期日
登录注册

文章基本信息

  • 标题:Face counting formula for toric arrangements defined by root systems
  • 本地全文:下载
  • 作者:Priyavrat Deshpande ; Kavita Sutar
  • 期刊名称:AKCE International Journal of Graphs and Combinatorics
  • 印刷版ISSN:0972-8600
  • 出版年度:2019
  • 卷号:16
  • 期号:1
  • 页码:66-77
  • DOI:10.1016/j.akcej.2018.07.002
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractA toric arrangement is a finite collection of codimension-1 subtori in a torus. The intersections of these subtori stratify the ambient torus into faces of various dimensions. The incidence relations among these faces give rise to many interesting combinatorial problems. One such problem is to obtain a closed-form formula for the number of faces in terms of the intrinsic arrangement data. In this paper we focus on toric arrangements defined by crystallographic root systems. Such an arrangement is equipped with an action of the associated Weyl group. The main result is a formula that expresses the face numbers in terms of a sum of indices of certain subgroups of this Weyl group.
  • 关键词:KeywordsToric arrangementsFace enumerationsf-vectorAffine Weyl groups
国家哲学社会科学文献中心版权所有