首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Probabilistic record linkage of de-identified research datasets with discrepancies using diagnosis codes
  • 本地全文:下载
  • 作者:Boris P. Hejblum ; Griffin M. Weber ; Katherine P. Liao
  • 期刊名称:Scientific Data
  • 电子版ISSN:2052-4463
  • 出版年度:2019
  • 卷号:6
  • DOI:10.1038/sdata.2018.298
  • 语种:English
  • 出版社:Nature Publishing Group
  • 摘要:We develop an algorithm for probabilistic linkage of de-identified research datasets at the patient level, when only diagnosis codes with discrepancies and no personal health identifiers such as name or date of birth are available. It relies on Bayesian modelling of binarized diagnosis codes, and provides a posterior probability of matching for each patient pair, while considering all the data at once. Both in our simulation study (using an administrative claims dataset for data generation) and in two real use-cases linking patient electronic health records from a large tertiary care network, our method exhibits good performance and compares favourably to the standard baseline Fellegi-Sunter algorithm. We propose a scalable, fast and efficient open-source implementation in the ludic R package available on CRAN, which also includes the anonymized diagnosis code data from our real use-case. This work suggests it is possible to link de-identified research databases stripped of any personal health identifiers using only diagnosis codes, provided sufficient information is shared between the data sources.
国家哲学社会科学文献中心版权所有