首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:ZuCo, a simultaneous EEG and eye-tracking resource for natural sentence reading
  • 本地全文:下载
  • 作者:Nora Hollenstein ; Jonathan Rotsztejn ; Marius Troendle
  • 期刊名称:Scientific Data
  • 电子版ISSN:2052-4463
  • 出版年度:2018
  • 卷号:5
  • DOI:10.1038/sdata.2018.291
  • 语种:English
  • 出版社:Nature Publishing Group
  • 摘要:We present the Zurich Cognitive Language Processing Corpus (ZuCo), a dataset combining electroencephalography (EEG) and eye-tracking recordings from subjects reading natural sentences. ZuCo includes high-density EEG and eye-tracking data of 12 healthy adult native English speakers, each reading natural English text for 4鈥?鈥塰ours. The recordings span two normal reading tasks and one task-specific reading task, resulting in a dataset that encompasses EEG and eye-tracking data of 21,629 words in 1107 sentences and 154,173 fixations. We believe that this dataset represents a valuable resource for natural language processing (NLP). The EEG and eye-tracking signals lend themselves to train improved machine-learning models for various tasks, in particular for information extraction tasks such as entity and relation extraction and sentiment analysis. Moreover, this dataset is useful for advancing research into the human reading and language understanding process at the level of brain activity and eye-movement.
国家哲学社会科学文献中心版权所有