首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Machine-learned and codified synthesis parameters of oxide materials
  • 本地全文:下载
  • 作者:Edward Kim ; Kevin Huang ; Alex Tomala
  • 期刊名称:Scientific Data
  • 电子版ISSN:2052-4463
  • 出版年度:2017
  • 卷号:4
  • DOI:10.1038/sdata.2017.127
  • 语种:English
  • 出版社:Nature Publishing Group
  • 摘要:Predictive materials design has rapidly accelerated in recent years with the advent of large-scale resources, such as materials structure and property databases generated by ab initio computations. In the absence of analogous ab initio frameworks for materials synthesis, high-throughput and machine learning techniques have recently been harnessed to generate synthesis strategies for select materials of interest. Still, a community-accessible, autonomously-compiled synthesis planning resource which spans across materials systems has not yet been developed. In this work, we present a collection of aggregated synthesis parameters computed using the text contained within over 640,000 journal articles using state-of-the-art natural language processing and machine learning techniques. We provide a dataset of synthesis parameters, compiled autonomously across 30 different oxide systems, in a format optimized for planning novel syntheses of materials.
国家哲学社会科学文献中心版权所有