首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Evolution of the gravity offset of mixed modes in RGB stars
  • 本地全文:下载
  • 作者:C. Pinçon ; M. Takata ; B. Mosser
  • 期刊名称:Astronomy & Astrophysics
  • 印刷版ISSN:0004-6361
  • 电子版ISSN:1432-0746
  • 出版年度:2019
  • 卷号:626
  • DOI:10.1051/0004-6361/201935327
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:Context.Observations of mixed modes in evolved low-mass stars enable us to probe the properties of not only the outer envelope of these stars, but also their deep layers. Among the seismic parameters associated with mixed modes, the gravity offset, denoted withεg, is expected to reveal information on the boundaries of the inner buoyancy resonant cavity. This parameter was recently measured for hundreds of stars observed by theKeplersatellite and its value was shown to change during evolution.Aims.In this article, we theoretically investigate the reasons for such a variation in terms of structure properties, focusing only on the red giant branch.Methods.Using available asymptotic analyses and a simple model of the Brunt–Väisälä and Lamb frequencies in the upper part of the radiative zone, we derived an analytical expression ofεgfor dipolar modes and compared its predictions to observations.Results.First, we show that the asymptotic value ofεgwell agrees with the mean value observed at the beginning of the ascent of the red giant branch, which results from the high density contrast between the helium core and the base of the convective envelope. Second, we demonstrate that the predicted value also explains the sharp decrease inεgobserved for the more luminous red giant stars of the sample. This rapid drop turns out to occur just before the luminosity bump and results from the kink of the Brunt–Väisälä frequency near the upper turning point associated with the buoyancy cavity as stars evolve and this latter nears the base of the convective envelope. The potential ofεgto probe the value and slope of the Brunt–Väisälä frequency below the base of the convective region is clearly highlighted.Conclusions.The observed variation inεgand its link with the internal properties on the red giant branch are now globally understood. This work motivates further analyses of the potential of this parameter as a seismic diagnosis of the region located between the hydrogen-burning shell and the base of the convective envelope, and of the local dynamical processes associated for instance with core contraction, the migration of the convective boundary, or overshooting.
  • 关键词:enasteroseismologystars: oscillationsstars: interiorsstars: evolution
国家哲学社会科学文献中心版权所有