首页    期刊浏览 2024年10月07日 星期一
登录注册

文章基本信息

  • 标题:Dynamically Hot Super-Earths from Outer Giant Planet Scattering
  • 本地全文:下载
  • 作者:Chelsea X. Huang ; Cristobal Petrovich ; Emily Deibert
  • 期刊名称:The Astronomical journal
  • 印刷版ISSN:0004-6256
  • 电子版ISSN:1538-3881
  • 出版年度:2017
  • 卷号:153
  • 期号:5
  • DOI:10.3847/1538-3881/aa67fb
  • 语种:English
  • 出版社:American Institute of Physics
  • 摘要:The hundreds of multiple planetary systems discovered by the Kepler mission are typically observed to reside in close-in ( AU), low-eccentricity, low-inclination orbits. We run N-body experiments to study the effect that unstable outer ( AU) giant planets, whose end orbital configurations resemble those in the Radial Velocity population, have on these close-in multiple super-Earth systems. Our experiments show that the giant planets greatly reduce the multiplicity of the inner super-Earths, and the surviving population can have large eccentricities () and inclinations () at levels that anti-correlate with multiplicity. Consequently, this model predicts the existence of a population of dynamically hot single-transiting planets with typical eccentricities and inclinations of ~0.1–0.5 and ~10°–40°. We show that these results can explain the following observations: (i) the recent eccentricity measurements of Kepler super-Earths from transit durations; (ii) the tentative observation that single-transiting systems have a wider distribution of stellar obliquity angles compared to the multiple-transiting systems; (iii) the architecture of some eccentric super-Earths discovered by Radial Velocity surveys such as HD 125612c. Future observations from TESS will reveal many more dynamically hot single transiting planets, for which follow up radial velocity studies will be able to test our models and see whether they have outer giant planets.
  • 关键词:planets and satellites: dynamical evolution and stability
国家哲学社会科学文献中心版权所有