摘要:We revisited a mass ejection phenomenon that occurred in asteroid P/2010 A2 in terms of the dynamical properties of the dust particles and large fragments. We constructed a model assuming anisotropic ejection within a solid cone-shaped jet and succeeded in reproducing the time-variant features in archival observational images over ~3 years from 2010 January to 2012 October. We assumed that the dust particles and fragments were ejected in the same direction from a point where no object had been detected in any observations, and the anisotropic model explains all of the observations including (i) the unique dust cloud morphology, (ii) the trail surface brightness, and (iii) the motions of the fragments. Our results suggest that the original body was shattered by an impact with specific energy J kg−1, and remnants of slow antipodal ejecta (i.e., anisotropic ejection in our model) were observed as P/2010 A2. The observed quantities are consistent with those obtained through laboratory impact experiments, supporting the idea that the P/2010 A2 event is the first evidence of the impact shattering that occurred in the present main asteroid belt.