首页    期刊浏览 2024年09月13日 星期五
登录注册

文章基本信息

  • 标题:Sulfur Hazes in Giant Exoplanet Atmospheres: Impacts on Reflected Light Spectra
  • 本地全文:下载
  • 作者:Peter Gao ; Mark S. Marley ; Kevin Zahnle
  • 期刊名称:The Astronomical journal
  • 印刷版ISSN:0004-6256
  • 电子版ISSN:1538-3881
  • 出版年度:2017
  • 卷号:153
  • 期号:3
  • DOI:10.3847/1538-3881/aa5fab
  • 语种:English
  • 出版社:American Institute of Physics
  • 摘要:Recent work has shown that sulfur hazes may arise in the atmospheres of some giant exoplanets, due to the photolysis of H2S. We investigate the impact such a haze would have on an exoplanet's geometric albedo spectrum and how it may affect the direct imaging results of the Wide Field Infrared Survey Telescope (WFIRST), a planned NASA space telescope. For temperate (250 K < T eq < 700 K) Jupiter-mass planets, photochemical destruction of H2S results in the production of ~1 ppmv of S8 between 100 and 0.1 mbar, which, if cool enough, will condense to form a haze. Nominal haze masses are found to drastically alter a planet's geometric albedo spectrum: whereas a clear atmosphere is dark at wavelengths between 0.5 and 1 μm, due to molecular absorption, the addition of a sulfur haze boosts the albedo there to ~0.7, due to scattering. Strong absorption by the haze shortward of 0.4 μm results in albedos <0.1, in contrast to the high albedos produced by Rayleigh scattering in a clear atmosphere. As a result, the color of the planet shifts from blue to orange. The existence of a sulfur haze masks the molecular signatures of methane and water, thereby complicating the characterization of atmospheric composition. Detection of such a haze by WFIRST is possible, though discriminating between a sulfur haze and any other highly reflective, high-altitude scatterer will require observations shortward of 0.4 μm, which is currently beyond WFIRST's design.
  • 关键词:planets and satellites: atmospheres
国家哲学社会科学文献中心版权所有