首页    期刊浏览 2025年05月26日 星期一
登录注册

文章基本信息

  • 标题:Hamiltonian Decomposition for Model Predictive Control
  • 本地全文:下载
  • 作者:Eduardo Poupard ; William P. Heath
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:3
  • 页码:193-198
  • DOI:10.1016/j.ifacol.2018.06.052
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractWe present the application of an eigenvalue decomposition for the solution of the optimal control problem in model predictive control (MPC). This approach can be used as an alternative to the Riccati recursion that occurs within interior-point solvers, which are used to compute the solution of the optimization problem in constrained MPC. We first demonstrate that a known method applied to the finite-horizon linear quadratic regulator (LQR) for free-final state can be extended to the LQ tracking problem. Likewise, the receding-horizon idea is implemented on these two optimal control problems. In addition, the implications for online implementation are discussed.
  • 关键词:KeywordsOptimal ControlHamiltonian MatrixPredictive ControlOptimization AlgorithmsOn-line Control
国家哲学社会科学文献中心版权所有