首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:Identification of Atmospheric Variable Using Deep Gaussian Processes ⁎
  • 本地全文:下载
  • 作者:Mitja Jančič ; Juš Kocijan ; Boštjan Grašič
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:5
  • 页码:43-48
  • DOI:10.1016/j.ifacol.2018.06.197
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractMathematical and physical modelling only provide an approximate description of the true nature of a dynamic system. The higher the accuracy of the model, the more likely it becomes analytically intractable; therefore, empirical models or black box models are used. When dynamic systems are considered as black box models, almost no prior knowledge about the system is considered. Deep Gaussian Processes, which use hierarchical structure to provide adequate identification of very complex systems, can be used to identify the mapping between the system input and output values. With the given mapping function, we can provide one-step ahead prediction of the system output values together with its uncertainty, which can be used advantageously. In this paper, we use deep Gaussian Processes to identify a dynamic system and evaluate the method empirically. In the illustrative case, we study one-step-ahead prediction of air temperature in the atmospheric surface layer.
  • 关键词:KeywordsSystem identificationdeep Gaussian Processesatmospheric temperaturebig data
国家哲学社会科学文献中心版权所有