首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Kinetic Model Discrimination for Methanol and DME Synthesis using Bayesian Estimation
  • 本地全文:下载
  • 作者:Andrea Bernardi ; Lucian Gomoescu ; Jialu Wang
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2019
  • 卷号:52
  • 期号:1
  • 页码:335-340
  • DOI:10.1016/j.ifacol.2019.06.084
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThree parameter estimation methods are compared for the discrimination between two kinetic models of methanol and DME synthesis over Cu/ZnO/Al2O3 catalysts. Two methods apply Bayes’ rule and Monte Carlo sampling to approximate the posterior distribution, while the third one is the popular frequentist method of finding a maximum likelihood estimate and constructing ellipsoidal confidence regions. The credible regions obtained with either Bayesian methods are similar, and they are consistently smaller and more informative than the frequentist confidence regions. Both kinetic models suffer from some practical identifiability issues for the experimental data at hand, but the evidence derived from the Bayesian estimation strongly favors the kinetic model that accounts for direct CO hydrogenation.
  • 关键词:KeywordsMethanol synthesisDME synthesiskinetic modelparameter estimationBayesian estimationnested samplingMarkov chain Monte Carlofrequentist estimation
国家哲学社会科学文献中心版权所有