首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Recursive System Identification Using Outlier-Robust Local Models
  • 本地全文:下载
  • 作者:Jessyca A. Bessa ; Guilherme A. Barreto
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2019
  • 卷号:52
  • 期号:1
  • 页码:436-441
  • DOI:10.1016/j.ifacol.2019.06.101
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper we revisit the design of neural-network based local linear models for dynamic system identification aiming at extending their use to scenarios contaminated with outliers. To this purpose, we modify well-known local linear models by replacing their original recursive rules with outlier-robust variants developed from the M-estimation framework. The performances of the proposed variants are evaluated infree simulationtasks over 3 benchmarking datasets. The obtained results corroborate the considerable improvement in the performance of the proposed models in the presence of outliers.
  • 关键词:KeywordsSystem identificationneural networkslocal linear modelsoutliersM-estimation
国家哲学社会科学文献中心版权所有