首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Incorporation of parameter prediction models of different fidelity into job shop scheduling
  • 本地全文:下载
  • 作者:Teemu J. Ikonen ; Iiro Harjunkoski
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2019
  • 卷号:52
  • 期号:1
  • 页码:142-147
  • DOI:10.1016/j.ifacol.2019.06.051
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractScheduling of industrial job shop processes is normally conducted using estimates of parameters (e.g. processing times) defining the optimization problem. Inaccuracy in these estimated parameters can significantly affect the optimality, or even feasibility, of the scheduling solution. In this work, we incorporate data-driven parameter prediction models of different fidelity into a unit-specific continuous time scheduling model, and investigate the dependency of the solution quality on the prediction model fidelity. Our high-fidelity prediction model is based on Gaussian processes (GP); more specifically we use the maximum a posteriori probability (MAP) estimate. The low and medium-fidelity prediction models rely on determining the average processing time or average processing rate, respectively, from the dataset. In our test case, involving prediction of taxi durations in New York City, the use of GP prediction model yielded, on average, 5.8% and 1.8% shorter realized make spans in comparison to using the low and medium-fidelity prediction models, respectively.
  • 关键词:KeywordsScheduling AlgorithmsOptimizationParameter EstimationMachine LearningGaussian Processes
国家哲学社会科学文献中心版权所有