首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Modifier-Adaptation Schemes Employing Gaussian Processes and Trust Regions for Real-Time Optimization ⁎
  • 本地全文:下载
  • 作者:E.A. del Rio Chanona ; J.E. Alves Graciano ; E. Bradford
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2019
  • 卷号:52
  • 期号:1
  • 页码:52-57
  • DOI:10.1016/j.ifacol.2019.06.036
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper investigates modifier-adaptation schemes based on Gaussian processes to handle plant-model mismatch in real-time optimization of uncertain processes. Building upon the recent work by Ferreira et al. [European Control Conference, 2018], we present two improved algorithms that rely on trust-region ideas in order to speed-up and robustify the approach. The first variant introduces a conventional trust region on the input variables, whose radius is adjusted based on the Gaussian process predictors’ ability to capture the cost and constraint mismatch. The second variant exploits the variance estimates from the Gaussian processes to define multiple trust regions directly on the cost and constraint predictors. These algorithms are demonstrated and compared on a Williams-Otto reactor benchmark problem.
  • 关键词:Keywordsreal-time optimizationmodifier adaptationGaussian processtrust region
国家哲学社会科学文献中心版权所有