首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Sensing Performance of Al and Sn Doped ZnO for Hydrogen Detection
  • 本地全文:下载
  • 作者:Zahira. El khalidi ; Maryam Siadat ; Elisabetta. Comini
  • 期刊名称:Proceedings
  • 电子版ISSN:2504-3900
  • 出版年度:2019
  • 卷号:14
  • 期号:1
  • 页码:39
  • DOI:10.3390/proceedings2019014039
  • 语种:English
  • 出版社:MDPI AG
  • 摘要:Chemical gas sensors were studied long ago and nowadays, for the advantageous role they provide to the environment, health condition monitoring and protection. The recent studies focus on the semiconductors sensing abilities, especially of non toxic and low cost compounds. The present work describes the steps to elaborate and perform a chemical sensor using intrinsic and doped semiconductor zinc oxide. First, we synthesized pure oxide using zinc powder, then, two other samples were established where we introduced the same doping percentage of Al and Sn respectively. Using low cost spray pyrolysis, and respecting the same conditions of preparation. The obtained samples were then characterized by X Ray Diffraction (XRD) that revealed the hexagonal wurzite structure and higher crystallite density towards the direction (002), besides the appearance of the vibration modes related to zinc oxide, confirmed by Raman spectroscopy. SEM spectroscopy showed that the surface morphology is ideal for oxidizing/reduction reactions, due to the porous structure and the low grain sizes, especially observed for the sample Sn doped ZnO. The gas testing confirms these predictions showing that the highest response is related to Sn doped ZnO compared to ZnO and followed by Al doped ZnO. The films exhibited responses towards: CO, acetone, methanol, H2, ammonia and NO2. The concentrations were varied from 10 to 500 ppm and the working temperatures from 250 to 500°C, the optimal working temperatures were 350 and 400 °C. Sn doped ZnO showed a high response towards H2 gas target, with a sensitivity reaching 200 at 500 ppm, for 400 °C.
国家哲学社会科学文献中心版权所有