首页    期刊浏览 2024年09月20日 星期五
登录注册

文章基本信息

  • 标题:Human ortholog of Drosophila Melted impedes SMAD2 release from TGF-β receptor I to inhibit TGF-β signaling
  • 本地全文:下载
  • 作者:Premalatha Shathasivam ; Alexandra Kollara ; Maurice J. Ringuette
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2015
  • 卷号:112
  • 期号:23
  • 页码:E3000-E3009
  • DOI:10.1073/pnas.1504671112
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:SignificanceVentricular zone expressed pleckstrin homology domain-containing 1 (VEPH1) is among genes on chromosome 3q24-26, a region amplified in several cancers. Although little is known of mammalian VEPH1, its Drosophila ortholog, Melted, is involved in neural and eye development, metabolism, and size determination through effects on Forkhead box O, target of rapamycin, and Hippo signaling. We show that VEPH1 expression affects similar gene categories as Melted and potently inhibits transforming growth factor-{beta} (TGF-{beta}) signaling. VEPH1 interacts with TGF-{beta} type I receptor (T{beta}RI) and inhibits dissociation of activated Sma- and Mad-related protein 2 from T{beta}RI, resulting in impaired TGF-{beta} signaling. TGF-{beta} acts initially as a tumor suppressor through its cytostatic activity, but subsequently promotes tumor progression. These findings suggest that VEPH1 could affect TGF-{beta} activity during cancer development/progression. Drosophila melted encodes a pleckstrin homology (PH) domain-containing protein that enables normal tissue growth, metabolism, and photoreceptor differentiation by modulating Forkhead box O (FOXO), target of rapamycin, and Hippo signaling pathways. Ventricular zone expressed PH domain-containing 1 (VEPH1) is the mammalian ortholog of melted, and although it exhibits tissue-restricted expression during mouse development and is potentially amplified in several human cancers, little is known of its function. Here we explore the impact of VEPH1 expression in ovarian cancer cells by gene-expression profiling. In cells with elevated VEPH1 expression, transcriptional programs associated with metabolism and FOXO and Hippo signaling were affected, analogous to what has been reported for Melted. We also observed altered regulation of multiple transforming growth factor-{beta} (TGF-{beta}) target genes. Global profiling revealed that elevated VEPH1 expression suppressed TGF-{beta}-induced transcriptional responses. This inhibitory effect was verified on selected TGF-{beta} target genes and by reporter gene assays in multiple cell lines. We further demonstrated that VEPH1 interacts with TGF-{beta} receptor I (T{beta}RI) and inhibits nuclear accumulation of activated Sma- and Mad-related protein 2 (SMAD2). We identified two T{beta}RI-interacting regions (TIRs) with opposing effects on TGF-{beta} signaling. TIR1, located at the N terminus, inhibits canonical TGF-{beta} signaling and promotes SMAD2 retention at T{beta}RI, similar to full-length VEPH1. In contrast, TIR2, located at the C-terminal region encompassing the PH domain, decreases SMAD2 retention at T{beta}RI and enhances TGF-{beta} signaling. Our studies indicate that VEPH1 inhibits TGF-{beta} signaling by impeding the release of activated SMAD2 from T{beta}RI and may modulate TGF-{beta} signaling during development and cancer initiation or progression.
  • 关键词:VEPH1 ; TGF-β ; SMAD2/3 ; Melted ; ALK5
国家哲学社会科学文献中心版权所有