首页    期刊浏览 2024年09月07日 星期六
登录注册

文章基本信息

  • 标题:BDNF pro-peptide actions facilitate hippocampal LTD and are altered by the common BDNF polymorphism Val66Met
  • 本地全文:下载
  • 作者:Toshiyuki Mizui ; Yasuyuki Ishikawa ; Haruko Kumanogoh
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2015
  • 卷号:112
  • 期号:23
  • 页码:E3067-E3074
  • DOI:10.1073/pnas.1422336112
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:SignificanceBrain-derived neurotrophic factor (BDNF) is a neurotrophin that elicits biological effects on synaptic plasticity. BDNF is initially synthesized as precursor proBDNF, and then the BDNF pro-peptide is simultaneously produced from the precursor protein. However, the physiological functions of the pro-peptide are largely unknown. Here, we demonstrate that the BDNF pro-peptide is a facilitator of hippocampal long-term depression (LTD), requiring the activation of GluN2B-containing NMDA-type receptors and the pan-neurotrophin receptor p75NTR. Second, a common BDNF polymorphism substitutes valine for methionine at amino acid position 66 (Val66Met) in the pro-peptide of BDNF and impairs memory function. Unexpectedly, the pro-peptide with Met mutation completely inhibits hippocampal LTD. These findings provide insights into the physiological role of the BDNF pro-peptide in the brain. Most growth factors are initially synthesized as precursor proteins and subsequently processed into their mature form by proteolytic cleavage, resulting in simultaneous removal of a pro-peptide. However, compared with that of mature form, the biological role of the pro-peptide is poorly understood. Here, we investigated the biological role of the pro-peptide of brain-derived neurotrophic factor (BDNF) and first showed that the pro-peptide is expressed and secreted in hippocampal tissues and cultures, respectively. Interestingly, we found that the BDNF pro-peptide directly facilitates hippocampal long-term depression (LTD), requiring the activation of GluN2B-containing NMDA receptors and the pan-neurotrophin receptor p75NTR. The BDNF pro-peptide also enhances NMDA-induced -amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor endocytosis, a mechanism crucial for LTD expression. Thus, the BDNF pro-peptide is involved in synaptic plasticity that regulates a mechanism responsible for promoting LTD. The well-known BDNF polymorphism valine for methionine at amino acid position 66 (Val66Met) affects human memory function. Here, the BDNF pro-peptide with Met mutation completely inhibits hippocampal LTD. These findings demonstrate functional roles for the BDNF pro-peptide and a naturally occurring human BDNF polymorphism in hippocampal synaptic depression.
  • 关键词:growth factor ; pro-peptide ; synaptic plasticity ; polymorphism ; neuron
国家哲学社会科学文献中心版权所有