期刊名称:Journal of Statistical Theory and Applications (JSTA)
电子版ISSN:1538-7887
出版年度:2018
卷号:17
期号:2
页码:263-272
DOI:10.2991/jsta.2018.17.2.6
语种:English
出版社:Atlantis Press
摘要:Marshall and Olkin [Biometrika199784641652] introduced a method for constructing a new distribution by adding a new parameter, called tilt parameter, to a parent distribution. It is observed that adding this parameter leads to a more flexible model than the parent model. In this paper, different estimators for tilt parameter as a major parameter are presented. Their performances are compared using Monte Carlo simulations. Hypothesis testing and interval estimation of tilt parameter using Rao score test is discussed.
关键词:Tilt parameter;Marshall-Olkin distribution;Maximum likelihood estimation;Maximum spacing estimation;Least-squares estimation;coverage probability