首页    期刊浏览 2025年10月11日 星期六
登录注册

文章基本信息

  • 标题:Parameter Estimation in Gamma Mixture Model using Normal-based Approximation
  • 本地全文:下载
  • 作者:R. Vani Lakshmi ; V.S. Vaidyanathan
  • 期刊名称:Journal of Statistical Theory and Applications (JSTA)
  • 电子版ISSN:1538-7887
  • 出版年度:2016
  • 卷号:15
  • 期号:1
  • 页码:27-37
  • DOI:10.2991/jsta.2016.15.1.3
  • 语种:English
  • 出版社:Atlantis Press
  • 摘要:Gamma mixture models have wide applications in hydrology, finance and reliability. Parameter estimation in this class of models is a challenging task owing to the complexity associated with the model structure. In this paper, a novel approach is proposed to estimate the parameters of Gamma mixture models using Wilson-Hilferty normalbased approximation method. The proposed methodology uses a popular clustering algorithm for Gaussian mixtures namely, MCLUST and a confidence interval based search approach to obtain the estimates. The methodology is implemented on simulated as well as real-life datasets and its performance is compared with gammamixEM() function available in R.
  • 关键词:Gamma Mixture Model; gammamixEM(); Maximum Likelihood; MCLUST; Mean Square Error; Wilson-Hilferty Approximation.
国家哲学社会科学文献中心版权所有